Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2.
نویسندگان
چکیده
Vascular structures adapt to changes in blood flow by adjusting their diameter accordingly. The factors mediating this process are only beginning to be identified. We have recently established a mouse model of arterial remodeling in which flow in the common carotid artery is interrupted by ligation of the vessel near the carotid bifurcation, resulting in a dramatic reduction in vessel diameter as a consequence of inward remodeling and intimal lesion formation. In the present study, we used this model to determine the role of fibroblast growth factor-2 (FGF-2) in the remodeling response by maintaining neutralizing serum levels of a mouse monoclonal antibody against FGF-2 for 4 weeks. Morphometric analysis revealed that intimal lesion formation was not affected by the antibody. However, lumen narrowing was significantly inhibited, resulting in a greater than 3-fold increase in lumen area in anti-FGF-2-treated animals compared with controls. Treatment with anti-FGF-2 antibody significantly inhibited the reduction in vessel diameter (inward remodeling) and shortening of the internal elastic lamina in the ligated vessel. In addition, anti-FGF-2 treatment also caused outward remodeling of the contralateral carotid artery. These findings identify FGF-2 as an important factor in vascular remodeling, and its effects are likely to be mediated by increasing vascular tone. The results are consistent with the recent observation of reduced vascular tone in the FGF-2-deficient mouse.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملEfficacy and specificity of bFGF increased collateral flow in experimental peripheral arterial insufficiency.
Angiogenic growth factors could prove to be useful in managing peripheral arterial insufficiency. The present study was designed to evaluate the dose response of basic fibroblast growth factor (bFGF), the efficacy of critical routes and dosing regimens, and the specificity of action in rats with peripheral arterial insufficiency. Bilateral ligation of femoral arteries greatly reduces blood flow...
متن کاملRegulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation.
We have previously demonstrated increased fibroblast growth factor-2 (FGF-2) expression in a lamb model of increased pulmonary blood flow secondary to congenital heart disease, which may contribute to the associated increases in pulmonary arterial muscularization. However, the mechanisms underlying these increases in FGF-2 expression remain to be identified. Initially, we found that exogenous F...
متن کاملFlow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice.
OBJECTIVE Fibroblast growth factor-2 (FGF2) has been implicated as a mediator in the structural remodeling of arteries. Chronic changes in blood flow are known to cause reorganization of the vessel wall, resulting in permanent changes in artery size (flow-dependent remodeling). Using FGF2 knockout (Fgf2(-/-)) mice, we tested the hypothesis that FGF2 is required during flow-dependent remodeling ...
متن کاملDose-dependent response of FGF-2 for lymphangiogenesis.
Spatio-temporal studies on the growth of capillary blood vessels and capillary lymphatic vessels in tissue remodeling have suggested that lymphangiogenesis is angiogenesis-dependent. We revisited this concept by using fibroblast growth factor 2 (FGF-2) (80 ng) to stimulate the growth of both vessel types in the mouse cornea. When we lowered the dose of FGF-2 in the cornea 6.4-fold (12.5 ng), th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 84 3 شماره
صفحات -
تاریخ انتشار 1999